#include "common.h" #include "regs.h" // PA01 - Indicator LED // PA04 - NSS // PA05 - SCK // PA06 - MISO // PA07 - MOSI // PA08 - Test Push Switch // PA11 - LD void Delay(uint32_t); uint8_t SendReceiveSPIByte(uint32_t); void SendSPIData (uint8_t,uint32_t); int main(void) { // Below are the ADF4350 settings for a 1 GHz -4dBm output uint32_t ar0=0x00500000; uint32_t ar1=0x08008011; uint32_t ar2=0x00004e42; uint32_t ar3=0x000004b3; uint32_t ar4=0x00ac8024; uint32_t ar5=0x00580005; // Turn on the port A + SPI1 clocks *(uint32_t *)(RCC_BASE + 0x18) &= MASK_2 | MASK_12; *(uint32_t *)(RCC_BASE + 0x18) |= BIT_2 | BIT_12; // SPI_CR2 setup // 02 SSOE enabled so SS output is enabled in master mode *(uint32_t *)(SPI1_BASE + 0x04) &= MASK_2; *(uint32_t *)(SPI1_BASE + 0x04) |= BIT_2; // I/O // PA01 needs to be in push pull mode thus 0 turns on the LED and 1 turns it off (0x2) - Bits // PA04 (SPI NSS) needs to be in alternate push pull mode (0xa) 0b1010 // PA05 (SPI SCK) needs to be in alternate push pull mode (0xa) // PA06 (SPI MISO) is a floating input (0x4) // PA07 (SPI MOSI) needs to be in alternate push pull mode (0xa) *(uint32_t *)GPIOA_BASE &= 0x0000ff0f; *(uint32_t *)GPIOA_BASE |= 0xa4aa0020; // PA08 is a push switch input // PA11 is a floating input *(uint32_t *)(GPIOA_BASE + 0x04) &= 0xffff0ff0; *(uint32_t *)(GPIOA_BASE + 0x04) |= 0x00004008; // PA8 input pull up set P8ODR to 1 // PA6 input pull up set P6ODR to 1 *(uint32_t *)(GPIOA_BASE + 0x0c) &= MASK_8 | MASK_6; *(uint32_t *)(GPIOA_BASE + 0x0c) |= BIT_8 | BIT_6; // SPI_CR1 setup // 15 BIDIMODE 0 - bidirectional // 14 BIDIOE 0 - output enabled // 13 CRCEN 0 - CRC disabled // 12 CRCNEXT 0 - No CRC phase // 11 DFF 0 - 8 bit data frame // 10 RXONLY 0 - Full duplex // 09 SSM 0 - Software slave management enabled // 08 SSI 0 // 07 LSBFIRST 0 - MSB sent first // 06 SPE 1 - SPI enabled // 05/04/03 111 - fpCLK/256 // 02 MSTR 1 - Master // 01 CPOL 0 - Clock to zero when idle // 00 CPHA 0 - First clock transition is the data edge *(uint32_t *)(SPI1_BASE) &= 0xffff0000; *(uint32_t *)(SPI1_BASE) |= BIT_6 | BIT_5 | BIT_4 | BIT_3 | BIT_2; // Flash the LED to show everything works *(uint32_t *)(GPIOA_BASE + 0x14) = BIT_1; Delay(500000); *(uint32_t *)(GPIOA_BASE + 0x10) = BIT_1; Delay(100000); while (1) { // Send the setup data to the synth board SendSPIData(0,ar0); SendSPIData(1,ar1); SendSPIData(2,ar2); SendSPIData(3,ar3); SendSPIData(4,ar4); SendSPIData(5,ar5); } // Go into an endless loop waiting for frequency lock to be achieved while(1) { // Read GPIO port A uint32_t portA = *(uint32_t *)(GPIOA_BASE + 0x08); // Just bit 11 portA &= BIT_11; // If we have lock turn on the LED if (portA == 0) *(uint32_t *)(GPIOA_BASE + 0x10) = BIT_1; else *(uint32_t *)(GPIOA_BASE + 0x14) = BIT_1; } } // A general purpose delay void Delay(uint32_t tmax) { uint32_t i; for (i=0;i < tmax ; i++) { asm("nop"); } } uint8_t SendReceiveSPIByte(uint32_t value) { uint8_t lout = 0; // Put the 8 bits to be sent into the SPI data register *(uint32_t *)(SPI1_BASE + 0x0c) = value; // Read a byte uint8_t inbyte = *(uint32_t *)(SPI1_BASE + 0x0c); // Loop while the SPI BSY flag is high while (lout == 0) { // Read the SPI status register uint32_t statusSPI = *(uint32_t *)(SPI1_BASE + 0x08); // Just bit 1 the transmit buffer empty flag - wait for this to go high then leave this function statusSPI &= BIT_1; if (statusSPI == BIT_1) lout = 1; } return inbyte; } void SendSPIData (uint8_t regNo,uint32_t outval) { SendReceiveSPIByte(0xa0); }