using System; using System.Text; using System.Collections; using System.Diagnostics; using System.Globalization; namespace Lidgren.Network { /// /// Big integer class based on BouncyCastle (http://www.bouncycastle.org) big integer code /// internal class NetBigInteger { private const long IMASK = 0xffffffffL; private const ulong UIMASK = (ulong)IMASK; private static readonly int[] ZeroMagnitude = new int[0]; private static readonly byte[] ZeroEncoding = new byte[0]; public static readonly NetBigInteger Zero = new NetBigInteger(0, ZeroMagnitude, false); public static readonly NetBigInteger One = createUValueOf(1); public static readonly NetBigInteger Two = createUValueOf(2); public static readonly NetBigInteger Three = createUValueOf(3); public static readonly NetBigInteger Ten = createUValueOf(10); private const int chunk2 = 1; private static readonly NetBigInteger radix2 = ValueOf(2); private static readonly NetBigInteger radix2E = radix2.Pow(chunk2); private const int chunk10 = 19; private static readonly NetBigInteger radix10 = ValueOf(10); private static readonly NetBigInteger radix10E = radix10.Pow(chunk10); private const int chunk16 = 16; private static readonly NetBigInteger radix16 = ValueOf(16); private static readonly NetBigInteger radix16E = radix16.Pow(chunk16); private const int BitsPerByte = 8; private const int BitsPerInt = 32; private const int BytesPerInt = 4; private int m_sign; // -1 means -ve; +1 means +ve; 0 means 0; private int[] m_magnitude; // array of ints with [0] being the most significant private int m_numBits = -1; // cache BitCount() value private int m_numBitLength = -1; // cache calcBitLength() value private long m_quote = -1L; // -m^(-1) mod b, b = 2^32 (see Montgomery mult.) private static int GetByteLength( int nBits) { return (nBits + BitsPerByte - 1) / BitsPerByte; } private NetBigInteger() { } private NetBigInteger( int signum, int[] mag, bool checkMag) { if (checkMag) { int i = 0; while (i < mag.Length && mag[i] == 0) { ++i; } if (i == mag.Length) { // sign = 0; m_magnitude = ZeroMagnitude; } else { m_sign = signum; if (i == 0) { m_magnitude = mag; } else { // strip leading 0 words m_magnitude = new int[mag.Length - i]; Array.Copy(mag, i, m_magnitude, 0, m_magnitude.Length); } } } else { m_sign = signum; m_magnitude = mag; } } public NetBigInteger( string value) : this(value, 10) { } public NetBigInteger( string str, int radix) { if (str.Length == 0) throw new FormatException("Zero length BigInteger"); NumberStyles style; int chunk; NetBigInteger r; NetBigInteger rE; switch (radix) { case 2: // Is there anyway to restrict to binary digits? style = NumberStyles.Integer; chunk = chunk2; r = radix2; rE = radix2E; break; case 10: // This style seems to handle spaces and minus sign already (our processing redundant?) style = NumberStyles.Integer; chunk = chunk10; r = radix10; rE = radix10E; break; case 16: // TODO Should this be HexNumber? style = NumberStyles.AllowHexSpecifier; chunk = chunk16; r = radix16; rE = radix16E; break; default: throw new FormatException("Only bases 2, 10, or 16 allowed"); } int index = 0; m_sign = 1; if (str[0] == '-') { if (str.Length == 1) throw new FormatException("Zero length BigInteger"); m_sign = -1; index = 1; } // strip leading zeros from the string str while (index < str.Length && Int32.Parse(str[index].ToString(), style) == 0) { index++; } if (index >= str.Length) { // zero value - we're done m_sign = 0; m_magnitude = ZeroMagnitude; return; } ////// // could we work out the max number of ints required to store // str.Length digits in the given base, then allocate that // storage in one hit?, then Generate the magnitude in one hit too? ////// NetBigInteger b = Zero; int next = index + chunk; if (next <= str.Length) { do { string s = str.Substring(index, chunk); ulong i = ulong.Parse(s, style); NetBigInteger bi = createUValueOf(i); switch (radix) { case 2: if (i > 1) throw new FormatException("Bad character in radix 2 string: " + s); b = b.ShiftLeft(1); break; case 16: b = b.ShiftLeft(64); break; default: b = b.Multiply(rE); break; } b = b.Add(bi); index = next; next += chunk; } while (next <= str.Length); } if (index < str.Length) { string s = str.Substring(index); ulong i = ulong.Parse(s, style); NetBigInteger bi = createUValueOf(i); if (b.m_sign > 0) { if (radix == 2) { // NB: Can't reach here since we are parsing one char at a time Debug.Assert(false); } else if (radix == 16) { b = b.ShiftLeft(s.Length << 2); } else { b = b.Multiply(r.Pow(s.Length)); } b = b.Add(bi); } else { b = bi; } } // Note: This is the previous (slower) algorithm // while (index < value.Length) // { // char c = value[index]; // string s = c.ToString(); // int i = Int32.Parse(s, style); // // b = b.Multiply(r).Add(ValueOf(i)); // index++; // } m_magnitude = b.m_magnitude; } public NetBigInteger( byte[] bytes) : this(bytes, 0, bytes.Length) { } public NetBigInteger( byte[] bytes, int offset, int length) { if (length == 0) throw new FormatException("Zero length BigInteger"); if ((sbyte)bytes[offset] < 0) { m_sign = -1; int end = offset + length; int iBval; // strip leading sign bytes for (iBval = offset; iBval < end && ((sbyte)bytes[iBval] == -1); iBval++) { } if (iBval >= end) { m_magnitude = One.m_magnitude; } else { int numBytes = end - iBval; byte[] inverse = new byte[numBytes]; int index = 0; while (index < numBytes) { inverse[index++] = (byte)~bytes[iBval++]; } Debug.Assert(iBval == end); while (inverse[--index] == byte.MaxValue) { inverse[index] = byte.MinValue; } inverse[index]++; m_magnitude = MakeMagnitude(inverse, 0, inverse.Length); } } else { // strip leading zero bytes and return magnitude bytes m_magnitude = MakeMagnitude(bytes, offset, length); m_sign = m_magnitude.Length > 0 ? 1 : 0; } } private static int[] MakeMagnitude( byte[] bytes, int offset, int length) { int end = offset + length; // strip leading zeros int firstSignificant; for (firstSignificant = offset; firstSignificant < end && bytes[firstSignificant] == 0; firstSignificant++) { } if (firstSignificant >= end) { return ZeroMagnitude; } int nInts = (end - firstSignificant + 3) / BytesPerInt; int bCount = (end - firstSignificant) % BytesPerInt; if (bCount == 0) { bCount = BytesPerInt; } if (nInts < 1) { return ZeroMagnitude; } int[] mag = new int[nInts]; int v = 0; int magnitudeIndex = 0; for (int i = firstSignificant; i < end; ++i) { v <<= 8; v |= bytes[i] & 0xff; bCount--; if (bCount <= 0) { mag[magnitudeIndex] = v; magnitudeIndex++; bCount = BytesPerInt; v = 0; } } if (magnitudeIndex < mag.Length) { mag[magnitudeIndex] = v; } return mag; } public NetBigInteger( int sign, byte[] bytes) : this(sign, bytes, 0, bytes.Length) { } public NetBigInteger( int sign, byte[] bytes, int offset, int length) { if (sign < -1 || sign > 1) throw new FormatException("Invalid sign value"); if (sign == 0) { //sign = 0; m_magnitude = ZeroMagnitude; } else { // copy bytes m_magnitude = MakeMagnitude(bytes, offset, length); m_sign = m_magnitude.Length < 1 ? 0 : sign; } } public NetBigInteger Abs() { return m_sign >= 0 ? this : Negate(); } // return a = a + b - b preserved. private static int[] AddMagnitudes( int[] a, int[] b) { int tI = a.Length - 1; int vI = b.Length - 1; long m = 0; while (vI >= 0) { m += ((long)(uint)a[tI] + (long)(uint)b[vI--]); a[tI--] = (int)m; m = (long)((ulong)m >> 32); } if (m != 0) { while (tI >= 0 && ++a[tI--] == 0) { } } return a; } public NetBigInteger Add( NetBigInteger value) { if (m_sign == 0) return value; if (m_sign != value.m_sign) { if (value.m_sign == 0) return this; if (value.m_sign < 0) return Subtract(value.Negate()); return value.Subtract(Negate()); } return AddToMagnitude(value.m_magnitude); } private NetBigInteger AddToMagnitude( int[] magToAdd) { int[] big, small; if (m_magnitude.Length < magToAdd.Length) { big = magToAdd; small = m_magnitude; } else { big = m_magnitude; small = magToAdd; } // Conservatively avoid over-allocation when no overflow possible uint limit = uint.MaxValue; if (big.Length == small.Length) limit -= (uint)small[0]; bool possibleOverflow = (uint)big[0] >= limit; int[] bigCopy; if (possibleOverflow) { bigCopy = new int[big.Length + 1]; big.CopyTo(bigCopy, 1); } else { bigCopy = (int[])big.Clone(); } bigCopy = AddMagnitudes(bigCopy, small); return new NetBigInteger(m_sign, bigCopy, possibleOverflow); } public NetBigInteger And( NetBigInteger value) { if (m_sign == 0 || value.m_sign == 0) { return Zero; } int[] aMag = m_sign > 0 ? m_magnitude : Add(One).m_magnitude; int[] bMag = value.m_sign > 0 ? value.m_magnitude : value.Add(One).m_magnitude; bool resultNeg = m_sign < 0 && value.m_sign < 0; int resultLength = System.Math.Max(aMag.Length, bMag.Length); int[] resultMag = new int[resultLength]; int aStart = resultMag.Length - aMag.Length; int bStart = resultMag.Length - bMag.Length; for (int i = 0; i < resultMag.Length; ++i) { int aWord = i >= aStart ? aMag[i - aStart] : 0; int bWord = i >= bStart ? bMag[i - bStart] : 0; if (m_sign < 0) { aWord = ~aWord; } if (value.m_sign < 0) { bWord = ~bWord; } resultMag[i] = aWord & bWord; if (resultNeg) { resultMag[i] = ~resultMag[i]; } } NetBigInteger result = new NetBigInteger(1, resultMag, true); if (resultNeg) { result = result.Not(); } return result; } private int calcBitLength( int indx, int[] mag) { for (; ; ) { if (indx >= mag.Length) return 0; if (mag[indx] != 0) break; ++indx; } // bit length for everything after the first int int bitLength = 32 * ((mag.Length - indx) - 1); // and determine bitlength of first int int firstMag = mag[indx]; bitLength += BitLen(firstMag); // Check for negative powers of two if (m_sign < 0 && ((firstMag & -firstMag) == firstMag)) { do { if (++indx >= mag.Length) { --bitLength; break; } } while (mag[indx] == 0); } return bitLength; } public int BitLength { get { if (m_numBitLength == -1) { m_numBitLength = m_sign == 0 ? 0 : calcBitLength(0, m_magnitude); } return m_numBitLength; } } // // BitLen(value) is the number of bits in value. // private static int BitLen( int w) { // Binary search - decision tree (5 tests, rarely 6) return (w < 1 << 15 ? (w < 1 << 7 ? (w < 1 << 3 ? (w < 1 << 1 ? (w < 1 << 0 ? (w < 0 ? 32 : 0) : 1) : (w < 1 << 2 ? 2 : 3)) : (w < 1 << 5 ? (w < 1 << 4 ? 4 : 5) : (w < 1 << 6 ? 6 : 7))) : (w < 1 << 11 ? (w < 1 << 9 ? (w < 1 << 8 ? 8 : 9) : (w < 1 << 10 ? 10 : 11)) : (w < 1 << 13 ? (w < 1 << 12 ? 12 : 13) : (w < 1 << 14 ? 14 : 15)))) : (w < 1 << 23 ? (w < 1 << 19 ? (w < 1 << 17 ? (w < 1 << 16 ? 16 : 17) : (w < 1 << 18 ? 18 : 19)) : (w < 1 << 21 ? (w < 1 << 20 ? 20 : 21) : (w < 1 << 22 ? 22 : 23))) : (w < 1 << 27 ? (w < 1 << 25 ? (w < 1 << 24 ? 24 : 25) : (w < 1 << 26 ? 26 : 27)) : (w < 1 << 29 ? (w < 1 << 28 ? 28 : 29) : (w < 1 << 30 ? 30 : 31))))); } private bool QuickPow2Check() { return m_sign > 0 && m_numBits == 1; } public int CompareTo( object obj) { return CompareTo((NetBigInteger)obj); } // unsigned comparison on two arrays - note the arrays may // start with leading zeros. private static int CompareTo( int xIndx, int[] x, int yIndx, int[] y) { while (xIndx != x.Length && x[xIndx] == 0) { xIndx++; } while (yIndx != y.Length && y[yIndx] == 0) { yIndx++; } return CompareNoLeadingZeroes(xIndx, x, yIndx, y); } private static int CompareNoLeadingZeroes( int xIndx, int[] x, int yIndx, int[] y) { int diff = (x.Length - y.Length) - (xIndx - yIndx); if (diff != 0) { return diff < 0 ? -1 : 1; } // lengths of magnitudes the same, test the magnitude values while (xIndx < x.Length) { uint v1 = (uint)x[xIndx++]; uint v2 = (uint)y[yIndx++]; if (v1 != v2) return v1 < v2 ? -1 : 1; } return 0; } public int CompareTo( NetBigInteger value) { return m_sign < value.m_sign ? -1 : m_sign > value.m_sign ? 1 : m_sign == 0 ? 0 : m_sign * CompareNoLeadingZeroes(0, m_magnitude, 0, value.m_magnitude); } // return z = x / y - done in place (z value preserved, x contains the remainder) private int[] Divide( int[] x, int[] y) { int xStart = 0; while (xStart < x.Length && x[xStart] == 0) { ++xStart; } int yStart = 0; while (yStart < y.Length && y[yStart] == 0) { ++yStart; } Debug.Assert(yStart < y.Length); int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y); int[] count; if (xyCmp > 0) { int yBitLength = calcBitLength(yStart, y); int xBitLength = calcBitLength(xStart, x); int shift = xBitLength - yBitLength; int[] iCount; int iCountStart = 0; int[] c; int cStart = 0; int cBitLength = yBitLength; if (shift > 0) { // iCount = ShiftLeft(One.magnitude, shift); iCount = new int[(shift >> 5) + 1]; iCount[0] = 1 << (shift % 32); c = ShiftLeft(y, shift); cBitLength += shift; } else { iCount = new int[] { 1 }; int len = y.Length - yStart; c = new int[len]; Array.Copy(y, yStart, c, 0, len); } count = new int[iCount.Length]; for (; ; ) { if (cBitLength < xBitLength || CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0) { Subtract(xStart, x, cStart, c); AddMagnitudes(count, iCount); while (x[xStart] == 0) { if (++xStart == x.Length) return count; } //xBitLength = calcBitLength(xStart, x); xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]); if (xBitLength <= yBitLength) { if (xBitLength < yBitLength) return count; xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y); if (xyCmp <= 0) break; } } shift = cBitLength - xBitLength; // NB: The case where c[cStart] is 1-bit is harmless if (shift == 1) { uint firstC = (uint)c[cStart] >> 1; uint firstX = (uint)x[xStart]; if (firstC > firstX) ++shift; } if (shift < 2) { c = ShiftRightOneInPlace(cStart, c); --cBitLength; iCount = ShiftRightOneInPlace(iCountStart, iCount); } else { c = ShiftRightInPlace(cStart, c, shift); cBitLength -= shift; iCount = ShiftRightInPlace(iCountStart, iCount, shift); } //cStart = c.Length - ((cBitLength + 31) / 32); while (c[cStart] == 0) { ++cStart; } while (iCount[iCountStart] == 0) { ++iCountStart; } } } else { count = new int[1]; } if (xyCmp == 0) { AddMagnitudes(count, One.m_magnitude); Array.Clear(x, xStart, x.Length - xStart); } return count; } public NetBigInteger Divide( NetBigInteger val) { if (val.m_sign == 0) throw new ArithmeticException("Division by zero error"); if (m_sign == 0) return Zero; if (val.QuickPow2Check()) // val is power of two { NetBigInteger result = Abs().ShiftRight(val.Abs().BitLength - 1); return val.m_sign == m_sign ? result : result.Negate(); } int[] mag = (int[])m_magnitude.Clone(); return new NetBigInteger(m_sign * val.m_sign, Divide(mag, val.m_magnitude), true); } public NetBigInteger[] DivideAndRemainder( NetBigInteger val) { if (val.m_sign == 0) throw new ArithmeticException("Division by zero error"); NetBigInteger[] biggies = new NetBigInteger[2]; if (m_sign == 0) { biggies[0] = Zero; biggies[1] = Zero; } else if (val.QuickPow2Check()) // val is power of two { int e = val.Abs().BitLength - 1; NetBigInteger quotient = Abs().ShiftRight(e); int[] remainder = LastNBits(e); biggies[0] = val.m_sign == m_sign ? quotient : quotient.Negate(); biggies[1] = new NetBigInteger(m_sign, remainder, true); } else { int[] remainder = (int[])m_magnitude.Clone(); int[] quotient = Divide(remainder, val.m_magnitude); biggies[0] = new NetBigInteger(m_sign * val.m_sign, quotient, true); biggies[1] = new NetBigInteger(m_sign, remainder, true); } return biggies; } public override bool Equals( object obj) { if (obj == this) return true; NetBigInteger biggie = obj as NetBigInteger; if (biggie == null) return false; if (biggie.m_sign != m_sign || biggie.m_magnitude.Length != m_magnitude.Length) return false; for (int i = 0; i < m_magnitude.Length; i++) { if (biggie.m_magnitude[i] != m_magnitude[i]) { return false; } } return true; } public NetBigInteger Gcd( NetBigInteger value) { if (value.m_sign == 0) return Abs(); if (m_sign == 0) return value.Abs(); NetBigInteger r; NetBigInteger u = this; NetBigInteger v = value; while (v.m_sign != 0) { r = u.Mod(v); u = v; v = r; } return u; } public override int GetHashCode() { int hc = m_magnitude.Length; if (m_magnitude.Length > 0) { hc ^= m_magnitude[0]; if (m_magnitude.Length > 1) { hc ^= m_magnitude[m_magnitude.Length - 1]; } } return m_sign < 0 ? ~hc : hc; } private NetBigInteger Inc() { if (m_sign == 0) return One; if (m_sign < 0) return new NetBigInteger(-1, doSubBigLil(m_magnitude, One.m_magnitude), true); return AddToMagnitude(One.m_magnitude); } public int IntValue { get { return m_sign == 0 ? 0 : m_sign > 0 ? m_magnitude[m_magnitude.Length - 1] : -m_magnitude[m_magnitude.Length - 1]; } } public NetBigInteger Max( NetBigInteger value) { return CompareTo(value) > 0 ? this : value; } public NetBigInteger Min( NetBigInteger value) { return CompareTo(value) < 0 ? this : value; } public NetBigInteger Mod( NetBigInteger m) { if (m.m_sign < 1) throw new ArithmeticException("Modulus must be positive"); NetBigInteger biggie = Remainder(m); return (biggie.m_sign >= 0 ? biggie : biggie.Add(m)); } public NetBigInteger ModInverse( NetBigInteger m) { if (m.m_sign < 1) throw new ArithmeticException("Modulus must be positive"); NetBigInteger x = new NetBigInteger(); NetBigInteger gcd = ExtEuclid(this, m, x, null); if (!gcd.Equals(One)) throw new ArithmeticException("Numbers not relatively prime."); if (x.m_sign < 0) { x.m_sign = 1; //x = m.Subtract(x); x.m_magnitude = doSubBigLil(m.m_magnitude, x.m_magnitude); } return x; } private static NetBigInteger ExtEuclid( NetBigInteger a, NetBigInteger b, NetBigInteger u1Out, NetBigInteger u2Out) { NetBigInteger u1 = One; NetBigInteger u3 = a; NetBigInteger v1 = Zero; NetBigInteger v3 = b; while (v3.m_sign > 0) { NetBigInteger[] q = u3.DivideAndRemainder(v3); NetBigInteger tmp = v1.Multiply(q[0]); NetBigInteger tn = u1.Subtract(tmp); u1 = v1; v1 = tn; u3 = v3; v3 = q[1]; } if (u1Out != null) { u1Out.m_sign = u1.m_sign; u1Out.m_magnitude = u1.m_magnitude; } if (u2Out != null) { NetBigInteger tmp = u1.Multiply(a); tmp = u3.Subtract(tmp); NetBigInteger res = tmp.Divide(b); u2Out.m_sign = res.m_sign; u2Out.m_magnitude = res.m_magnitude; } return u3; } private static void ZeroOut( int[] x) { Array.Clear(x, 0, x.Length); } public NetBigInteger ModPow( NetBigInteger exponent, NetBigInteger m) { if (m.m_sign < 1) throw new ArithmeticException("Modulus must be positive"); if (m.Equals(One)) return Zero; if (exponent.m_sign == 0) return One; if (m_sign == 0) return Zero; int[] zVal = null; int[] yAccum = null; int[] yVal; // Montgomery exponentiation is only possible if the modulus is odd, // but AFAIK, this is always the case for crypto algo's bool useMonty = ((m.m_magnitude[m.m_magnitude.Length - 1] & 1) == 1); long mQ = 0; if (useMonty) { mQ = m.GetMQuote(); // tmp = this * R mod m NetBigInteger tmp = ShiftLeft(32 * m.m_magnitude.Length).Mod(m); zVal = tmp.m_magnitude; useMonty = (zVal.Length <= m.m_magnitude.Length); if (useMonty) { yAccum = new int[m.m_magnitude.Length + 1]; if (zVal.Length < m.m_magnitude.Length) { int[] longZ = new int[m.m_magnitude.Length]; zVal.CopyTo(longZ, longZ.Length - zVal.Length); zVal = longZ; } } } if (!useMonty) { if (m_magnitude.Length <= m.m_magnitude.Length) { //zAccum = new int[m.magnitude.Length * 2]; zVal = new int[m.m_magnitude.Length]; m_magnitude.CopyTo(zVal, zVal.Length - m_magnitude.Length); } else { // // in normal practice we'll never see .. // NetBigInteger tmp = Remainder(m); //zAccum = new int[m.magnitude.Length * 2]; zVal = new int[m.m_magnitude.Length]; tmp.m_magnitude.CopyTo(zVal, zVal.Length - tmp.m_magnitude.Length); } yAccum = new int[m.m_magnitude.Length * 2]; } yVal = new int[m.m_magnitude.Length]; // // from LSW to MSW // for (int i = 0; i < exponent.m_magnitude.Length; i++) { int v = exponent.m_magnitude[i]; int bits = 0; if (i == 0) { while (v > 0) { v <<= 1; bits++; } // // first time in initialise y // zVal.CopyTo(yVal, 0); v <<= 1; bits++; } while (v != 0) { if (useMonty) { // Montgomery square algo doesn't exist, and a normal // square followed by a Montgomery reduction proved to // be almost as heavy as a Montgomery mulitply. MultiplyMonty(yAccum, yVal, yVal, m.m_magnitude, mQ); } else { Square(yAccum, yVal); Remainder(yAccum, m.m_magnitude); Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0, yVal.Length); ZeroOut(yAccum); } bits++; if (v < 0) { if (useMonty) { MultiplyMonty(yAccum, yVal, zVal, m.m_magnitude, mQ); } else { Multiply(yAccum, yVal, zVal); Remainder(yAccum, m.m_magnitude); Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0, yVal.Length); ZeroOut(yAccum); } } v <<= 1; } while (bits < 32) { if (useMonty) { MultiplyMonty(yAccum, yVal, yVal, m.m_magnitude, mQ); } else { Square(yAccum, yVal); Remainder(yAccum, m.m_magnitude); Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0, yVal.Length); ZeroOut(yAccum); } bits++; } } if (useMonty) { // Return y * R^(-1) mod m by doing y * 1 * R^(-1) mod m ZeroOut(zVal); zVal[zVal.Length - 1] = 1; MultiplyMonty(yAccum, yVal, zVal, m.m_magnitude, mQ); } NetBigInteger result = new NetBigInteger(1, yVal, true); return exponent.m_sign > 0 ? result : result.ModInverse(m); } // return w with w = x * x - w is assumed to have enough space. private static int[] Square( int[] w, int[] x) { // Note: this method allows w to be only (2 * x.Length - 1) words if result will fit // if (w.Length != 2 * x.Length) // throw new ArgumentException("no I don't think so..."); ulong u1, u2, c; int wBase = w.Length - 1; for (int i = x.Length - 1; i != 0; i--) { ulong v = (ulong)(uint)x[i]; u1 = v * v; u2 = u1 >> 32; u1 = (uint)u1; u1 += (ulong)(uint)w[wBase]; w[wBase] = (int)(uint)u1; c = u2 + (u1 >> 32); for (int j = i - 1; j >= 0; j--) { --wBase; u1 = v * (ulong)(uint)x[j]; u2 = u1 >> 31; // multiply by 2! u1 = (uint)(u1 << 1); // multiply by 2! u1 += c + (ulong)(uint)w[wBase]; w[wBase] = (int)(uint)u1; c = u2 + (u1 >> 32); } c += (ulong)(uint)w[--wBase]; w[wBase] = (int)(uint)c; if (--wBase >= 0) { w[wBase] = (int)(uint)(c >> 32); } else { Debug.Assert((uint)(c >> 32) == 0); } wBase += i; } u1 = (ulong)(uint)x[0]; u1 = u1 * u1; u2 = u1 >> 32; u1 = u1 & IMASK; u1 += (ulong)(uint)w[wBase]; w[wBase] = (int)(uint)u1; if (--wBase >= 0) { w[wBase] = (int)(uint)(u2 + (u1 >> 32) + (ulong)(uint)w[wBase]); } else { Debug.Assert((uint)(u2 + (u1 >> 32)) == 0); } return w; } // return x with x = y * z - x is assumed to have enough space. private static int[] Multiply( int[] x, int[] y, int[] z) { int i = z.Length; if (i < 1) return x; int xBase = x.Length - y.Length; for (; ; ) { long a = z[--i] & IMASK; long val = 0; for (int j = y.Length - 1; j >= 0; j--) { val += a * (y[j] & IMASK) + (x[xBase + j] & IMASK); x[xBase + j] = (int)val; val = (long)((ulong)val >> 32); } --xBase; if (i < 1) { if (xBase >= 0) { x[xBase] = (int)val; } else { Debug.Assert(val == 0); } break; } x[xBase] = (int)val; } return x; } private static long FastExtEuclid( long a, long b, long[] uOut) { long u1 = 1; long u3 = a; long v1 = 0; long v3 = b; while (v3 > 0) { long q, tn; q = u3 / v3; tn = u1 - (v1 * q); u1 = v1; v1 = tn; tn = u3 - (v3 * q); u3 = v3; v3 = tn; } uOut[0] = u1; uOut[1] = (u3 - (u1 * a)) / b; return u3; } private static long FastModInverse( long v, long m) { if (m < 1) throw new ArithmeticException("Modulus must be positive"); long[] x = new long[2]; long gcd = FastExtEuclid(v, m, x); if (gcd != 1) throw new ArithmeticException("Numbers not relatively prime."); if (x[0] < 0) { x[0] += m; } return x[0]; } private long GetMQuote() { Debug.Assert(m_sign > 0); if (m_quote != -1) { return m_quote; // already calculated } if (m_magnitude.Length == 0 || (m_magnitude[m_magnitude.Length - 1] & 1) == 0) { return -1; // not for even numbers } long v = (((~m_magnitude[m_magnitude.Length - 1]) | 1) & 0xffffffffL); m_quote = FastModInverse(v, 0x100000000L); return m_quote; } private static void MultiplyMonty( int[] a, int[] x, int[] y, int[] m, long mQuote) // mQuote = -m^(-1) mod b { if (m.Length == 1) { x[0] = (int)MultiplyMontyNIsOne((uint)x[0], (uint)y[0], (uint)m[0], (ulong)mQuote); return; } int n = m.Length; int nMinus1 = n - 1; long y_0 = y[nMinus1] & IMASK; // 1. a = 0 (Notation: a = (a_{n} a_{n-1} ... a_{0})_{b} ) Array.Clear(a, 0, n + 1); // 2. for i from 0 to (n - 1) do the following: for (int i = n; i > 0; i--) { long x_i = x[i - 1] & IMASK; // 2.1 u = ((a[0] + (x[i] * y[0]) * mQuote) mod b long u = ((((a[n] & IMASK) + ((x_i * y_0) & IMASK)) & IMASK) * mQuote) & IMASK; // 2.2 a = (a + x_i * y + u * m) / b long prod1 = x_i * y_0; long prod2 = u * (m[nMinus1] & IMASK); long tmp = (a[n] & IMASK) + (prod1 & IMASK) + (prod2 & IMASK); long carry = (long)((ulong)prod1 >> 32) + (long)((ulong)prod2 >> 32) + (long)((ulong)tmp >> 32); for (int j = nMinus1; j > 0; j--) { prod1 = x_i * (y[j - 1] & IMASK); prod2 = u * (m[j - 1] & IMASK); tmp = (a[j] & IMASK) + (prod1 & IMASK) + (prod2 & IMASK) + (carry & IMASK); carry = (long)((ulong)carry >> 32) + (long)((ulong)prod1 >> 32) + (long)((ulong)prod2 >> 32) + (long)((ulong)tmp >> 32); a[j + 1] = (int)tmp; // division by b } carry += (a[0] & IMASK); a[1] = (int)carry; a[0] = (int)((ulong)carry >> 32); // OJO!!!!! } // 3. if x >= m the x = x - m if (CompareTo(0, a, 0, m) >= 0) { Subtract(0, a, 0, m); } // put the result in x Array.Copy(a, 1, x, 0, n); } private static uint MultiplyMontyNIsOne( uint x, uint y, uint m, ulong mQuote) { ulong um = m; ulong prod1 = (ulong)x * (ulong)y; ulong u = (prod1 * mQuote) & UIMASK; ulong prod2 = u * um; ulong tmp = (prod1 & UIMASK) + (prod2 & UIMASK); ulong carry = (prod1 >> 32) + (prod2 >> 32) + (tmp >> 32); if (carry > um) { carry -= um; } return (uint)(carry & UIMASK); } public NetBigInteger Modulus( NetBigInteger val) { return Mod(val); } public NetBigInteger Multiply( NetBigInteger val) { if (m_sign == 0 || val.m_sign == 0) return Zero; if (val.QuickPow2Check()) // val is power of two { NetBigInteger result = ShiftLeft(val.Abs().BitLength - 1); return val.m_sign > 0 ? result : result.Negate(); } if (QuickPow2Check()) // this is power of two { NetBigInteger result = val.ShiftLeft(Abs().BitLength - 1); return m_sign > 0 ? result : result.Negate(); } int maxBitLength = BitLength + val.BitLength; int resLength = (maxBitLength + BitsPerInt - 1) / BitsPerInt; int[] res = new int[resLength]; if (val == this) { Square(res, m_magnitude); } else { Multiply(res, m_magnitude, val.m_magnitude); } return new NetBigInteger(m_sign * val.m_sign, res, true); } public NetBigInteger Negate() { if (m_sign == 0) return this; return new NetBigInteger(-m_sign, m_magnitude, false); } public NetBigInteger Not() { return Inc().Negate(); } public NetBigInteger Pow(int exp) { if (exp < 0) { throw new ArithmeticException("Negative exponent"); } if (exp == 0) { return One; } if (m_sign == 0 || Equals(One)) { return this; } NetBigInteger y = One; NetBigInteger z = this; for (; ; ) { if ((exp & 0x1) == 1) { y = y.Multiply(z); } exp >>= 1; if (exp == 0) break; z = z.Multiply(z); } return y; } private int Remainder( int m) { Debug.Assert(m > 0); long acc = 0; for (int pos = 0; pos < m_magnitude.Length; ++pos) { long posVal = (uint)m_magnitude[pos]; acc = (acc << 32 | posVal) % m; } return (int)acc; } // return x = x % y - done in place (y value preserved) private int[] Remainder( int[] x, int[] y) { int xStart = 0; while (xStart < x.Length && x[xStart] == 0) { ++xStart; } int yStart = 0; while (yStart < y.Length && y[yStart] == 0) { ++yStart; } Debug.Assert(yStart < y.Length); int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y); if (xyCmp > 0) { int yBitLength = calcBitLength(yStart, y); int xBitLength = calcBitLength(xStart, x); int shift = xBitLength - yBitLength; int[] c; int cStart = 0; int cBitLength = yBitLength; if (shift > 0) { c = ShiftLeft(y, shift); cBitLength += shift; Debug.Assert(c[0] != 0); } else { int len = y.Length - yStart; c = new int[len]; Array.Copy(y, yStart, c, 0, len); } for (; ; ) { if (cBitLength < xBitLength || CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0) { Subtract(xStart, x, cStart, c); while (x[xStart] == 0) { if (++xStart == x.Length) return x; } //xBitLength = calcBitLength(xStart, x); xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]); if (xBitLength <= yBitLength) { if (xBitLength < yBitLength) return x; xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y); if (xyCmp <= 0) break; } } shift = cBitLength - xBitLength; // NB: The case where c[cStart] is 1-bit is harmless if (shift == 1) { uint firstC = (uint)c[cStart] >> 1; uint firstX = (uint)x[xStart]; if (firstC > firstX) ++shift; } if (shift < 2) { c = ShiftRightOneInPlace(cStart, c); --cBitLength; } else { c = ShiftRightInPlace(cStart, c, shift); cBitLength -= shift; } //cStart = c.Length - ((cBitLength + 31) / 32); while (c[cStart] == 0) { ++cStart; } } } if (xyCmp == 0) { Array.Clear(x, xStart, x.Length - xStart); } return x; } public NetBigInteger Remainder( NetBigInteger n) { if (n.m_sign == 0) throw new ArithmeticException("Division by zero error"); if (m_sign == 0) return Zero; // For small values, use fast remainder method if (n.m_magnitude.Length == 1) { int val = n.m_magnitude[0]; if (val > 0) { if (val == 1) return Zero; int rem = Remainder(val); return rem == 0 ? Zero : new NetBigInteger(m_sign, new int[] { rem }, false); } } if (CompareNoLeadingZeroes(0, m_magnitude, 0, n.m_magnitude) < 0) return this; int[] result; if (n.QuickPow2Check()) // n is power of two { result = LastNBits(n.Abs().BitLength - 1); } else { result = (int[])m_magnitude.Clone(); result = Remainder(result, n.m_magnitude); } return new NetBigInteger(m_sign, result, true); } private int[] LastNBits( int n) { if (n < 1) return ZeroMagnitude; int numWords = (n + BitsPerInt - 1) / BitsPerInt; numWords = System.Math.Min(numWords, m_magnitude.Length); int[] result = new int[numWords]; Array.Copy(m_magnitude, m_magnitude.Length - numWords, result, 0, numWords); int hiBits = n % 32; if (hiBits != 0) { result[0] &= ~(-1 << hiBits); } return result; } // do a left shift - this returns a new array. private static int[] ShiftLeft( int[] mag, int n) { int nInts = (int)((uint)n >> 5); int nBits = n & 0x1f; int magLen = mag.Length; int[] newMag; if (nBits == 0) { newMag = new int[magLen + nInts]; mag.CopyTo(newMag, 0); } else { int i = 0; int nBits2 = 32 - nBits; int highBits = (int)((uint)mag[0] >> nBits2); if (highBits != 0) { newMag = new int[magLen + nInts + 1]; newMag[i++] = highBits; } else { newMag = new int[magLen + nInts]; } int m = mag[0]; for (int j = 0; j < magLen - 1; j++) { int next = mag[j + 1]; newMag[i++] = (m << nBits) | (int)((uint)next >> nBits2); m = next; } newMag[i] = mag[magLen - 1] << nBits; } return newMag; } public NetBigInteger ShiftLeft( int n) { if (m_sign == 0 || m_magnitude.Length == 0) return Zero; if (n == 0) return this; if (n < 0) return ShiftRight(-n); NetBigInteger result = new NetBigInteger(m_sign, ShiftLeft(m_magnitude, n), true); if (m_numBits != -1) { result.m_numBits = m_sign > 0 ? m_numBits : m_numBits + n; } if (m_numBitLength != -1) { result.m_numBitLength = m_numBitLength + n; } return result; } // do a right shift - this does it in place. private static int[] ShiftRightInPlace( int start, int[] mag, int n) { int nInts = (int)((uint)n >> 5) + start; int nBits = n & 0x1f; int magEnd = mag.Length - 1; if (nInts != start) { int delta = (nInts - start); for (int i = magEnd; i >= nInts; i--) { mag[i] = mag[i - delta]; } for (int i = nInts - 1; i >= start; i--) { mag[i] = 0; } } if (nBits != 0) { int nBits2 = 32 - nBits; int m = mag[magEnd]; for (int i = magEnd; i > nInts; --i) { int next = mag[i - 1]; mag[i] = (int)((uint)m >> nBits) | (next << nBits2); m = next; } mag[nInts] = (int)((uint)mag[nInts] >> nBits); } return mag; } // do a right shift by one - this does it in place. private static int[] ShiftRightOneInPlace( int start, int[] mag) { int i = mag.Length; int m = mag[i - 1]; while (--i > start) { int next = mag[i - 1]; mag[i] = ((int)((uint)m >> 1)) | (next << 31); m = next; } mag[start] = (int)((uint)mag[start] >> 1); return mag; } public NetBigInteger ShiftRight( int n) { if (n == 0) return this; if (n < 0) return ShiftLeft(-n); if (n >= BitLength) return (m_sign < 0 ? One.Negate() : Zero); // int[] res = (int[]) magnitude.Clone(); // // res = ShiftRightInPlace(0, res, n); // // return new BigInteger(sign, res, true); int resultLength = (BitLength - n + 31) >> 5; int[] res = new int[resultLength]; int numInts = n >> 5; int numBits = n & 31; if (numBits == 0) { Array.Copy(m_magnitude, 0, res, 0, res.Length); } else { int numBits2 = 32 - numBits; int magPos = m_magnitude.Length - 1 - numInts; for (int i = resultLength - 1; i >= 0; --i) { res[i] = (int)((uint)m_magnitude[magPos--] >> numBits); if (magPos >= 0) { res[i] |= m_magnitude[magPos] << numBits2; } } } Debug.Assert(res[0] != 0); return new NetBigInteger(m_sign, res, false); } public int SignValue { get { return m_sign; } } // returns x = x - y - we assume x is >= y private static int[] Subtract( int xStart, int[] x, int yStart, int[] y) { Debug.Assert(yStart < y.Length); Debug.Assert(x.Length - xStart >= y.Length - yStart); int iT = x.Length; int iV = y.Length; long m; int borrow = 0; do { m = (x[--iT] & IMASK) - (y[--iV] & IMASK) + borrow; x[iT] = (int)m; // borrow = (m < 0) ? -1 : 0; borrow = (int)(m >> 63); } while (iV > yStart); if (borrow != 0) { while (--x[--iT] == -1) { } } return x; } public NetBigInteger Subtract( NetBigInteger n) { if (n.m_sign == 0) return this; if (m_sign == 0) return n.Negate(); if (m_sign != n.m_sign) return Add(n.Negate()); int compare = CompareNoLeadingZeroes(0, m_magnitude, 0, n.m_magnitude); if (compare == 0) return Zero; NetBigInteger bigun, lilun; if (compare < 0) { bigun = n; lilun = this; } else { bigun = this; lilun = n; } return new NetBigInteger(m_sign * compare, doSubBigLil(bigun.m_magnitude, lilun.m_magnitude), true); } private static int[] doSubBigLil( int[] bigMag, int[] lilMag) { int[] res = (int[])bigMag.Clone(); return Subtract(0, res, 0, lilMag); } public byte[] ToByteArray() { return ToByteArray(false); } public byte[] ToByteArrayUnsigned() { return ToByteArray(true); } private byte[] ToByteArray( bool unsigned) { if (m_sign == 0) return unsigned ? ZeroEncoding : new byte[1]; int nBits = (unsigned && m_sign > 0) ? BitLength : BitLength + 1; int nBytes = GetByteLength(nBits); byte[] bytes = new byte[nBytes]; int magIndex = m_magnitude.Length; int bytesIndex = bytes.Length; if (m_sign > 0) { while (magIndex > 1) { uint mag = (uint)m_magnitude[--magIndex]; bytes[--bytesIndex] = (byte)mag; bytes[--bytesIndex] = (byte)(mag >> 8); bytes[--bytesIndex] = (byte)(mag >> 16); bytes[--bytesIndex] = (byte)(mag >> 24); } uint lastMag = (uint)m_magnitude[0]; while (lastMag > byte.MaxValue) { bytes[--bytesIndex] = (byte)lastMag; lastMag >>= 8; } bytes[--bytesIndex] = (byte)lastMag; } else // sign < 0 { bool carry = true; while (magIndex > 1) { uint mag = ~((uint)m_magnitude[--magIndex]); if (carry) { carry = (++mag == uint.MinValue); } bytes[--bytesIndex] = (byte)mag; bytes[--bytesIndex] = (byte)(mag >> 8); bytes[--bytesIndex] = (byte)(mag >> 16); bytes[--bytesIndex] = (byte)(mag >> 24); } uint lastMag = (uint)m_magnitude[0]; if (carry) { // Never wraps because magnitude[0] != 0 --lastMag; } while (lastMag > byte.MaxValue) { bytes[--bytesIndex] = (byte)~lastMag; lastMag >>= 8; } bytes[--bytesIndex] = (byte)~lastMag; if (bytesIndex > 0) { bytes[--bytesIndex] = byte.MaxValue; } } return bytes; } public override string ToString() { return ToString(10); } public string ToString( int radix) { switch (radix) { case 2: case 10: case 16: break; default: throw new FormatException("Only bases 2, 10, 16 are allowed"); } // NB: Can only happen to internally managed instances if (m_magnitude == null) return "null"; if (m_sign == 0) return "0"; Debug.Assert(m_magnitude.Length > 0); StringBuilder sb = new StringBuilder(); if (radix == 16) { sb.Append(m_magnitude[0].ToString("x")); for (int i = 1; i < m_magnitude.Length; i++) { sb.Append(m_magnitude[i].ToString("x8")); } } else if (radix == 2) { sb.Append('1'); for (int i = BitLength - 2; i >= 0; --i) { sb.Append(TestBit(i) ? '1' : '0'); } } else { // This is algorithm 1a from chapter 4.4 in Seminumerical Algorithms, slow but it works Stack S = new Stack(); NetBigInteger bs = ValueOf(radix); NetBigInteger u = Abs(); NetBigInteger b; while (u.m_sign != 0) { b = u.Mod(bs); if (b.m_sign == 0) { S.Push("0"); } else { // see how to interact with different bases S.Push(b.m_magnitude[0].ToString("d")); } u = u.Divide(bs); } // Then pop the stack while (S.Count != 0) { sb.Append((string)S.Pop()); } } string s = sb.ToString(); Debug.Assert(s.Length > 0); // Strip leading zeros. (We know this number is not all zeroes though) if (s[0] == '0') { int nonZeroPos = 0; while (s[++nonZeroPos] == '0') { } s = s.Substring(nonZeroPos); } if (m_sign == -1) { s = "-" + s; } return s; } private static NetBigInteger createUValueOf( ulong value) { int msw = (int)(value >> 32); int lsw = (int)value; if (msw != 0) return new NetBigInteger(1, new int[] { msw, lsw }, false); if (lsw != 0) { NetBigInteger n = new NetBigInteger(1, new int[] { lsw }, false); // Check for a power of two if ((lsw & -lsw) == lsw) { n.m_numBits = 1; } return n; } return Zero; } private static NetBigInteger createValueOf( long value) { if (value < 0) { if (value == long.MinValue) return createValueOf(~value).Not(); return createValueOf(-value).Negate(); } return createUValueOf((ulong)value); } public static NetBigInteger ValueOf( long value) { switch (value) { case 0: return Zero; case 1: return One; case 2: return Two; case 3: return Three; case 10: return Ten; } return createValueOf(value); } public int GetLowestSetBit() { if (m_sign == 0) return -1; int w = m_magnitude.Length; while (--w > 0) { if (m_magnitude[w] != 0) break; } int word = (int)m_magnitude[w]; Debug.Assert(word != 0); int b = (word & 0x0000FFFF) == 0 ? (word & 0x00FF0000) == 0 ? 7 : 15 : (word & 0x000000FF) == 0 ? 23 : 31; while (b > 0) { if ((word << b) == int.MinValue) break; b--; } return ((m_magnitude.Length - w) * 32 - (b + 1)); } public bool TestBit( int n) { if (n < 0) throw new ArithmeticException("Bit position must not be negative"); if (m_sign < 0) return !Not().TestBit(n); int wordNum = n / 32; if (wordNum >= m_magnitude.Length) return false; int word = m_magnitude[m_magnitude.Length - 1 - wordNum]; return ((word >> (n % 32)) & 1) > 0; } } #if WINDOWS_RUNTIME internal sealed class Stack { private System.Collections.Generic.List m_list = new System.Collections.Generic.List(); public int Count { get { return m_list.Count; } } public void Push(object item) { m_list.Add(item); } public object Pop() { var item = m_list[m_list.Count - 1]; m_list.RemoveAt(m_list.Count - 1); return item; } } #endif }