using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using UnityEngine;
namespace SRMultiplayer
{
///
/// Functions to Compress Quaternions and Floats
///
///
/// Uncompressed Quaternion = 32 * 4 = 128 bits => send 16 bytes
///
///
/// Quaternion is always normalized so we drop largest value and re-calculate it.
/// We can encode which one is the largest using 2 bits
///
/// x^2 + y^2 + z^2 + w^2 = 1
///
///
///
///
/// 2nd largest value has max size of 1/sqrt(2)
/// We can encode the smallest three components in [-1/sqrt(2),+1/sqrt(2)] instead of [-1,+1]
///
/// c^2 + c^2 + 0 + 0 = 1
///
///
///
///
/// Sign of largest value doesn't matter
///
/// Q * vec3 == (-Q) * vec3
///
///
///
///
///
/// RotationPrecision
///
/// 2/sqrt(2) / (2^bitCount - 1)
///
///
///
/// -
/// rotation precision +-0.00138 in range [-1,+1]
///
/// 10 bits per value
/// 2 + 10 * 3 = 32 bits => send 4 bytes
///
///
///
///
///
/// Links for more info:
///
GDC Talk
///
Post on Snapshot Compression
///
///
public static class Compression
{
const float QuaternionMinValue = -1f / 1.414214f; // 1/ sqrt(2)
const float QuaternionMaxValue = 1f / 1.414214f;
const int QuaternionBitLength = 10;
// same as Mathf.Pow(2, targetBitLength) - 1
const uint QuaternionUintRange = (1 << QuaternionBitLength) - 1;
///
/// Used to Compress Quaternion into 4 bytes
///
public static uint CompressQuaternion(Quaternion value)
{
// make sure value is normalized (don't trust user given value, and math here assumes normalized)
value = value.normalized;
int largestIndex = FindLargestIndex(value);
Vector3 small = GetSmallerDimensions(largestIndex, value);
// largest needs to be positive to be calculated by reader
// if largest is negative flip sign of others because Q = -Q
if (value[largestIndex] < 0)
{
small *= -1;
}
uint a = ScaleToUInt(small.x, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
uint b = ScaleToUInt(small.y, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
uint c = ScaleToUInt(small.z, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
// pack each 10 bits and extra 2 bits into uint32
uint packed = a | b << 10 | c << 20 | (uint)largestIndex << 30;
return packed;
}
internal static int FindLargestIndex(Quaternion q)
{
int index = 0;
float current = 0;
// check each value to see which one is largest (ignoring +-)
for (int i = 0; i < 4; i++)
{
float next = Mathf.Abs(q[i]);
if (next > current)
{
index = i;
current = next;
}
}
return index;
}
static Vector3 GetSmallerDimensions(int largestIndex, Quaternion value)
{
float x = value.x;
float y = value.y;
float z = value.z;
float w = value.w;
switch (largestIndex)
{
case 0:
return new Vector3(y, z, w);
case 1:
return new Vector3(x, z, w);
case 2:
return new Vector3(x, y, w);
case 3:
return new Vector3(x, y, z);
default:
throw new IndexOutOfRangeException("Invalid Quaternion index!");
}
}
///
/// Used to read a Compressed Quaternion from 4 bytes
/// Quaternion is normalized
///
public static Quaternion DecompressQuaternion(uint packed)
{
// 10 bits
const uint mask = 0b11_1111_1111;
Quaternion result;
uint a = packed & mask;
uint b = (packed >> 10) & mask;
uint c = (packed >> 20) & mask;
uint largestIndex = (packed >> 30) & mask;
float x = ScaleFromUInt(a, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
float y = ScaleFromUInt(b, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
float z = ScaleFromUInt(c, QuaternionMinValue, QuaternionMaxValue, 0, QuaternionUintRange);
Vector3 small = new Vector3(x, y, z);
result = FromSmallerDimensions(largestIndex, small);
return result;
}
static Quaternion FromSmallerDimensions(uint largestIndex, Vector3 smallest)
{
float a = smallest.x;
float b = smallest.y;
float c = smallest.z;
float largest = Mathf.Sqrt(1 - a * a - b * b - c * c);
switch (largestIndex)
{
case 0:
return new Quaternion(largest, a, b, c).normalized;
case 1:
return new Quaternion(a, largest, b, c).normalized;
case 2:
return new Quaternion(a, b, largest, c).normalized;
case 3:
return new Quaternion(a, b, c, largest).normalized;
default:
throw new IndexOutOfRangeException("Invalid Quaternion index!");
}
}
///
/// Scales float from minFloat->maxFloat to minUint->maxUint
/// values out side of minFloat/maxFloat will return either 0 or maxUint
///
///
///
///
/// should be a power of 2, can be 0
/// should be a power of 2, for example 1 << 8 for value to take up 8 bytes
///
public static uint ScaleToUInt(float value, float minFloat, float maxFloat, uint minUint, uint maxUint)
{
// if out of range return min/max
if (value > maxFloat) { return maxUint; }
if (value < minFloat) { return minUint; }
float rangeFloat = maxFloat - minFloat;
uint rangeUint = maxUint - minUint;
// scale value to 0->1 (as float)
float valueRelative = (value - minFloat) / rangeFloat;
// scale value to uMin->uMax
float outValue = valueRelative * rangeUint + minUint;
return (uint)outValue;
}
///
/// Scales uint from minUint->maxUint to minFloat->maxFloat
///
///
///
///
/// should be a power of 2, can be 0
/// should be a power of 2, for example 1 << 8 for value to take up 8 bytes
///
public static float ScaleFromUInt(uint value, float minFloat, float maxFloat, uint minUint, uint maxUint)
{
// if out of range return min/max
if (value > maxUint) { return maxFloat; }
if (value < minUint) { return minFloat; }
float rangeFloat = maxFloat - minFloat;
uint rangeUint = maxUint - minUint;
// scale value to 0->1 (as float)
// make sure divide is float
float valueRelative = (value - minUint) / (float)rangeUint;
// scale value to fMin->fMax
float outValue = valueRelative * rangeFloat + minFloat;
return outValue;
}
}
}