283 lines
7.3 KiB
JavaScript
283 lines
7.3 KiB
JavaScript
|
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js
|
||
|
Bitcoin.ECDSA = (function () {
|
||
|
var ecparams = EllipticCurve.getSECCurveByName("secp256k1");
|
||
|
var rng = new SecureRandom();
|
||
|
|
||
|
var P_OVER_FOUR = null;
|
||
|
|
||
|
function implShamirsTrick(P, k, Q, l) {
|
||
|
var m = Math.max(k.bitLength(), l.bitLength());
|
||
|
var Z = P.add2D(Q);
|
||
|
var R = P.curve.getInfinity();
|
||
|
|
||
|
for (var i = m - 1; i >= 0; --i) {
|
||
|
R = R.twice2D();
|
||
|
|
||
|
R.z = BigInteger.ONE;
|
||
|
|
||
|
if (k.testBit(i)) {
|
||
|
if (l.testBit(i)) {
|
||
|
R = R.add2D(Z);
|
||
|
} else {
|
||
|
R = R.add2D(P);
|
||
|
}
|
||
|
} else {
|
||
|
if (l.testBit(i)) {
|
||
|
R = R.add2D(Q);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return R;
|
||
|
};
|
||
|
|
||
|
var ECDSA = {
|
||
|
getBigRandom: function (limit) {
|
||
|
return new BigInteger(limit.bitLength(), rng)
|
||
|
.mod(limit.subtract(BigInteger.ONE))
|
||
|
.add(BigInteger.ONE);
|
||
|
},
|
||
|
sign: function (hash, priv) {
|
||
|
var d = priv;
|
||
|
var n = ecparams.getN();
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
|
||
|
do {
|
||
|
var k = ECDSA.getBigRandom(n);
|
||
|
var G = ecparams.getG();
|
||
|
var Q = G.multiply(k);
|
||
|
var r = Q.getX().toBigInteger().mod(n);
|
||
|
} while (r.compareTo(BigInteger.ZERO) <= 0);
|
||
|
|
||
|
var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
|
||
|
|
||
|
return ECDSA.serializeSig(r, s);
|
||
|
},
|
||
|
|
||
|
verify: function (hash, sig, pubkey) {
|
||
|
var r, s;
|
||
|
if (Bitcoin.Util.isArray(sig)) {
|
||
|
var obj = ECDSA.parseSig(sig);
|
||
|
r = obj.r;
|
||
|
s = obj.s;
|
||
|
} else if ("object" === typeof sig && sig.r && sig.s) {
|
||
|
r = sig.r;
|
||
|
s = sig.s;
|
||
|
} else {
|
||
|
throw "Invalid value for signature";
|
||
|
}
|
||
|
|
||
|
var Q;
|
||
|
if (pubkey instanceof ec.PointFp) {
|
||
|
Q = pubkey;
|
||
|
} else if (Bitcoin.Util.isArray(pubkey)) {
|
||
|
Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey);
|
||
|
} else {
|
||
|
throw "Invalid format for pubkey value, must be byte array or ec.PointFp";
|
||
|
}
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
|
||
|
return ECDSA.verifyRaw(e, r, s, Q);
|
||
|
},
|
||
|
|
||
|
verifyRaw: function (e, r, s, Q) {
|
||
|
var n = ecparams.getN();
|
||
|
var G = ecparams.getG();
|
||
|
|
||
|
if (r.compareTo(BigInteger.ONE) < 0 ||
|
||
|
r.compareTo(n) >= 0)
|
||
|
return false;
|
||
|
|
||
|
if (s.compareTo(BigInteger.ONE) < 0 ||
|
||
|
s.compareTo(n) >= 0)
|
||
|
return false;
|
||
|
|
||
|
var c = s.modInverse(n);
|
||
|
|
||
|
var u1 = e.multiply(c).mod(n);
|
||
|
var u2 = r.multiply(c).mod(n);
|
||
|
|
||
|
// TODO(!!!): For some reason Shamir's trick isn't working with
|
||
|
// signed message verification!? Probably an implementation
|
||
|
// error!
|
||
|
//var point = implShamirsTrick(G, u1, Q, u2);
|
||
|
var point = G.multiply(u1).add(Q.multiply(u2));
|
||
|
|
||
|
var v = point.getX().toBigInteger().mod(n);
|
||
|
|
||
|
return v.equals(r);
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Serialize a signature into DER format.
|
||
|
*
|
||
|
* Takes two BigIntegers representing r and s and returns a byte array.
|
||
|
*/
|
||
|
serializeSig: function (r, s) {
|
||
|
var rBa = r.toByteArraySigned();
|
||
|
var sBa = s.toByteArraySigned();
|
||
|
|
||
|
var sequence = [];
|
||
|
sequence.push(0x02); // INTEGER
|
||
|
sequence.push(rBa.length);
|
||
|
sequence = sequence.concat(rBa);
|
||
|
|
||
|
sequence.push(0x02); // INTEGER
|
||
|
sequence.push(sBa.length);
|
||
|
sequence = sequence.concat(sBa);
|
||
|
|
||
|
sequence.unshift(sequence.length);
|
||
|
sequence.unshift(0x30); // SEQUENCE
|
||
|
|
||
|
return sequence;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Parses a byte array containing a DER-encoded signature.
|
||
|
*
|
||
|
* This function will return an object of the form:
|
||
|
*
|
||
|
* {
|
||
|
* r: BigInteger,
|
||
|
* s: BigInteger
|
||
|
* }
|
||
|
*/
|
||
|
parseSig: function (sig) {
|
||
|
var cursor;
|
||
|
if (sig[0] != 0x30)
|
||
|
throw new Error("Signature not a valid DERSequence");
|
||
|
|
||
|
cursor = 2;
|
||
|
if (sig[cursor] != 0x02)
|
||
|
throw new Error("First element in signature must be a DERInteger"); ;
|
||
|
var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
|
||
|
|
||
|
cursor += 2 + sig[cursor + 1];
|
||
|
if (sig[cursor] != 0x02)
|
||
|
throw new Error("Second element in signature must be a DERInteger");
|
||
|
var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]);
|
||
|
|
||
|
cursor += 2 + sig[cursor + 1];
|
||
|
|
||
|
//if (cursor != sig.length)
|
||
|
// throw new Error("Extra bytes in signature");
|
||
|
|
||
|
var r = BigInteger.fromByteArrayUnsigned(rBa);
|
||
|
var s = BigInteger.fromByteArrayUnsigned(sBa);
|
||
|
|
||
|
return { r: r, s: s };
|
||
|
},
|
||
|
|
||
|
parseSigCompact: function (sig) {
|
||
|
if (sig.length !== 65) {
|
||
|
throw "Signature has the wrong length";
|
||
|
}
|
||
|
|
||
|
// Signature is prefixed with a type byte storing three bits of
|
||
|
// information.
|
||
|
var i = sig[0] - 27;
|
||
|
if (i < 0 || i > 7) {
|
||
|
throw "Invalid signature type";
|
||
|
}
|
||
|
|
||
|
var n = ecparams.getN();
|
||
|
var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n);
|
||
|
var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n);
|
||
|
|
||
|
return { r: r, s: s, i: i };
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Recover a public key from a signature.
|
||
|
*
|
||
|
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
|
||
|
* Key Recovery Operation".
|
||
|
*
|
||
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
||
|
*/
|
||
|
recoverPubKey: function (r, s, hash, i) {
|
||
|
// The recovery parameter i has two bits.
|
||
|
i = i & 3;
|
||
|
|
||
|
// The less significant bit specifies whether the y coordinate
|
||
|
// of the compressed point is even or not.
|
||
|
var isYEven = i & 1;
|
||
|
|
||
|
// The more significant bit specifies whether we should use the
|
||
|
// first or second candidate key.
|
||
|
var isSecondKey = i >> 1;
|
||
|
|
||
|
var n = ecparams.getN();
|
||
|
var G = ecparams.getG();
|
||
|
var curve = ecparams.getCurve();
|
||
|
var p = curve.getQ();
|
||
|
var a = curve.getA().toBigInteger();
|
||
|
var b = curve.getB().toBigInteger();
|
||
|
|
||
|
// We precalculate (p + 1) / 4 where p is if the field order
|
||
|
if (!P_OVER_FOUR) {
|
||
|
P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4));
|
||
|
}
|
||
|
|
||
|
// 1.1 Compute x
|
||
|
var x = isSecondKey ? r.add(n) : r;
|
||
|
|
||
|
// 1.3 Convert x to point
|
||
|
var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p);
|
||
|
var beta = alpha.modPow(P_OVER_FOUR, p);
|
||
|
|
||
|
var xorOdd = beta.isEven() ? (i % 2) : ((i + 1) % 2);
|
||
|
// If beta is even, but y isn't or vice versa, then convert it,
|
||
|
// otherwise we're done and y == beta.
|
||
|
var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta);
|
||
|
|
||
|
// 1.4 Check that nR is at infinity
|
||
|
var R = new EllipticCurve.PointFp(curve,
|
||
|
curve.fromBigInteger(x),
|
||
|
curve.fromBigInteger(y));
|
||
|
R.validate();
|
||
|
|
||
|
// 1.5 Compute e from M
|
||
|
var e = BigInteger.fromByteArrayUnsigned(hash);
|
||
|
var eNeg = BigInteger.ZERO.subtract(e).mod(n);
|
||
|
|
||
|
// 1.6 Compute Q = r^-1 (sR - eG)
|
||
|
var rInv = r.modInverse(n);
|
||
|
var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv);
|
||
|
|
||
|
Q.validate();
|
||
|
if (!ECDSA.verifyRaw(e, r, s, Q)) {
|
||
|
throw "Pubkey recovery unsuccessful";
|
||
|
}
|
||
|
|
||
|
var pubKey = new Bitcoin.ECKey();
|
||
|
pubKey.pub = Q;
|
||
|
return pubKey;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Calculate pubkey extraction parameter.
|
||
|
*
|
||
|
* When extracting a pubkey from a signature, we have to
|
||
|
* distinguish four different cases. Rather than putting this
|
||
|
* burden on the verifier, Bitcoin includes a 2-bit value with the
|
||
|
* signature.
|
||
|
*
|
||
|
* This function simply tries all four cases and returns the value
|
||
|
* that resulted in a successful pubkey recovery.
|
||
|
*/
|
||
|
calcPubkeyRecoveryParam: function (address, r, s, hash) {
|
||
|
for (var i = 0; i < 4; i++) {
|
||
|
try {
|
||
|
var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i);
|
||
|
if (pubkey.getBitcoinAddress().toString() == address) {
|
||
|
return i;
|
||
|
}
|
||
|
} catch (e) { }
|
||
|
}
|
||
|
throw "Unable to find valid recovery factor";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
return ECDSA;
|
||
|
})();
|