//https://raw.github.com/bitcoinjs/bitcoinjs-lib/e90780d3d3b8fc0d027d2bcb38b80479902f223e/src/ecdsa.js Bitcoin.ECDSA = (function () { var ecparams = EllipticCurve.getSECCurveByName("secp256k1"); var rng = new SecureRandom(); var P_OVER_FOUR = null; function implShamirsTrick(P, k, Q, l) { var m = Math.max(k.bitLength(), l.bitLength()); var Z = P.add2D(Q); var R = P.curve.getInfinity(); for (var i = m - 1; i >= 0; --i) { R = R.twice2D(); R.z = BigInteger.ONE; if (k.testBit(i)) { if (l.testBit(i)) { R = R.add2D(Z); } else { R = R.add2D(P); } } else { if (l.testBit(i)) { R = R.add2D(Q); } } } return R; }; var ECDSA = { getBigRandom: function (limit) { return new BigInteger(limit.bitLength(), rng) .mod(limit.subtract(BigInteger.ONE)) .add(BigInteger.ONE); }, sign: function (hash, priv) { var d = priv; var n = ecparams.getN(); var e = BigInteger.fromByteArrayUnsigned(hash); do { var k = ECDSA.getBigRandom(n); var G = ecparams.getG(); var Q = G.multiply(k); var r = Q.getX().toBigInteger().mod(n); } while (r.compareTo(BigInteger.ZERO) <= 0); var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n); return ECDSA.serializeSig(r, s); }, verify: function (hash, sig, pubkey) { var r, s; if (Bitcoin.Util.isArray(sig)) { var obj = ECDSA.parseSig(sig); r = obj.r; s = obj.s; } else if ("object" === typeof sig && sig.r && sig.s) { r = sig.r; s = sig.s; } else { throw "Invalid value for signature"; } var Q; if (pubkey instanceof ec.PointFp) { Q = pubkey; } else if (Bitcoin.Util.isArray(pubkey)) { Q = EllipticCurve.PointFp.decodeFrom(ecparams.getCurve(), pubkey); } else { throw "Invalid format for pubkey value, must be byte array or ec.PointFp"; } var e = BigInteger.fromByteArrayUnsigned(hash); return ECDSA.verifyRaw(e, r, s, Q); }, verifyRaw: function (e, r, s, Q) { var n = ecparams.getN(); var G = ecparams.getG(); if (r.compareTo(BigInteger.ONE) < 0 || r.compareTo(n) >= 0) return false; if (s.compareTo(BigInteger.ONE) < 0 || s.compareTo(n) >= 0) return false; var c = s.modInverse(n); var u1 = e.multiply(c).mod(n); var u2 = r.multiply(c).mod(n); // TODO(!!!): For some reason Shamir's trick isn't working with // signed message verification!? Probably an implementation // error! //var point = implShamirsTrick(G, u1, Q, u2); var point = G.multiply(u1).add(Q.multiply(u2)); var v = point.getX().toBigInteger().mod(n); return v.equals(r); }, /** * Serialize a signature into DER format. * * Takes two BigIntegers representing r and s and returns a byte array. */ serializeSig: function (r, s) { var rBa = r.toByteArraySigned(); var sBa = s.toByteArraySigned(); var sequence = []; sequence.push(0x02); // INTEGER sequence.push(rBa.length); sequence = sequence.concat(rBa); sequence.push(0x02); // INTEGER sequence.push(sBa.length); sequence = sequence.concat(sBa); sequence.unshift(sequence.length); sequence.unshift(0x30); // SEQUENCE return sequence; }, /** * Parses a byte array containing a DER-encoded signature. * * This function will return an object of the form: * * { * r: BigInteger, * s: BigInteger * } */ parseSig: function (sig) { var cursor; if (sig[0] != 0x30) throw new Error("Signature not a valid DERSequence"); cursor = 2; if (sig[cursor] != 0x02) throw new Error("First element in signature must be a DERInteger"); ; var rBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]); cursor += 2 + sig[cursor + 1]; if (sig[cursor] != 0x02) throw new Error("Second element in signature must be a DERInteger"); var sBa = sig.slice(cursor + 2, cursor + 2 + sig[cursor + 1]); cursor += 2 + sig[cursor + 1]; //if (cursor != sig.length) // throw new Error("Extra bytes in signature"); var r = BigInteger.fromByteArrayUnsigned(rBa); var s = BigInteger.fromByteArrayUnsigned(sBa); return { r: r, s: s }; }, parseSigCompact: function (sig) { if (sig.length !== 65) { throw "Signature has the wrong length"; } // Signature is prefixed with a type byte storing three bits of // information. var i = sig[0] - 27; if (i < 0 || i > 7) { throw "Invalid signature type"; } var n = ecparams.getN(); var r = BigInteger.fromByteArrayUnsigned(sig.slice(1, 33)).mod(n); var s = BigInteger.fromByteArrayUnsigned(sig.slice(33, 65)).mod(n); return { r: r, s: s, i: i }; }, /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ recoverPubKey: function (r, s, hash, i) { // The recovery parameter i has two bits. i = i & 3; // The less significant bit specifies whether the y coordinate // of the compressed point is even or not. var isYEven = i & 1; // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1; var n = ecparams.getN(); var G = ecparams.getG(); var curve = ecparams.getCurve(); var p = curve.getQ(); var a = curve.getA().toBigInteger(); var b = curve.getB().toBigInteger(); // We precalculate (p + 1) / 4 where p is if the field order if (!P_OVER_FOUR) { P_OVER_FOUR = p.add(BigInteger.ONE).divide(BigInteger.valueOf(4)); } // 1.1 Compute x var x = isSecondKey ? r.add(n) : r; // 1.3 Convert x to point var alpha = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(p); var beta = alpha.modPow(P_OVER_FOUR, p); var xorOdd = beta.isEven() ? (i % 2) : ((i + 1) % 2); // If beta is even, but y isn't or vice versa, then convert it, // otherwise we're done and y == beta. var y = (beta.isEven() ? !isYEven : isYEven) ? beta : p.subtract(beta); // 1.4 Check that nR is at infinity var R = new EllipticCurve.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y)); R.validate(); // 1.5 Compute e from M var e = BigInteger.fromByteArrayUnsigned(hash); var eNeg = BigInteger.ZERO.subtract(e).mod(n); // 1.6 Compute Q = r^-1 (sR - eG) var rInv = r.modInverse(n); var Q = implShamirsTrick(R, s, G, eNeg).multiply(rInv); Q.validate(); if (!ECDSA.verifyRaw(e, r, s, Q)) { throw "Pubkey recovery unsuccessful"; } var pubKey = new Bitcoin.ECKey(); pubKey.pub = Q; return pubKey; }, /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ calcPubkeyRecoveryParam: function (address, r, s, hash) { for (var i = 0; i < 4; i++) { try { var pubkey = Bitcoin.ECDSA.recoverPubKey(r, s, hash, i); if (pubkey.getBitcoinAddress().toString() == address) { return i; } } catch (e) { } } throw "Unable to find valid recovery factor"; } }; return ECDSA; })();