
Add TAJ design Add Lanadesign Add ARC design add Tajcoin add aquariuscoin, lanacoin and nevacoin remove trailing white spaces remove trailing white spaces Wrong AquariusCoin logo New AquariusCoin ARCO logo Partial Slovenian translation "si" Update si.js Slovenian translation -SI Update README Update README
669 lines
19 KiB
JavaScript
669 lines
19 KiB
JavaScript
//https://raw.github.com/bitcoinjs/bitcoinjs-lib/faa10f0f6a1fff0b9a99fffb9bc30cee33b17212/src/ecdsa.js
|
|
/*!
|
|
* Basic Javascript Elliptic Curve implementation
|
|
* Ported loosely from BouncyCastle's Java EC code
|
|
* Only Fp curves implemented for now
|
|
*
|
|
* Copyright Tom Wu, bitaddress.org BSD License.
|
|
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
|
|
*/
|
|
(function () {
|
|
|
|
// Constructor function of Global EllipticCurve object
|
|
var ec = window.EllipticCurve = function () { };
|
|
|
|
|
|
// ----------------
|
|
// ECFieldElementFp constructor
|
|
// q instanceof BigInteger
|
|
// x instanceof BigInteger
|
|
ec.FieldElementFp = function (q, x) {
|
|
this.x = x;
|
|
// TODO if(x.compareTo(q) >= 0) error
|
|
this.q = q;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.x.equals(other.x));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.toBigInteger = function () {
|
|
return this.x;
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.negate = function () {
|
|
return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.add = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.subtract = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.multiply = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.square = function () {
|
|
return new ec.FieldElementFp(this.q, this.x.square().mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.divide = function (b) {
|
|
return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
|
|
};
|
|
|
|
ec.FieldElementFp.prototype.getByteLength = function () {
|
|
return Math.floor((this.toBigInteger().bitLength() + 7) / 8);
|
|
};
|
|
|
|
// D.1.4 91
|
|
/**
|
|
* return a sqrt root - the routine verifies that the calculation
|
|
* returns the right value - if none exists it returns null.
|
|
*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.prototype.sqrt = function () {
|
|
if (!this.q.testBit(0)) throw new Error("even value of q");
|
|
|
|
// p mod 4 == 3
|
|
if (this.q.testBit(1)) {
|
|
// z = g^(u+1) + p, p = 4u + 3
|
|
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q));
|
|
return z.square().equals(this) ? z : null;
|
|
}
|
|
|
|
// p mod 4 == 1
|
|
var qMinusOne = this.q.subtract(BigInteger.ONE);
|
|
var legendreExponent = qMinusOne.shiftRight(1);
|
|
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
|
|
var u = qMinusOne.shiftRight(2);
|
|
var k = u.shiftLeft(1).add(BigInteger.ONE);
|
|
var Q = this.x;
|
|
var fourQ = Q.shiftLeft(2).mod(this.q);
|
|
var U, V;
|
|
|
|
do {
|
|
var rand = new SecureRandom();
|
|
var P;
|
|
do {
|
|
P = new BigInteger(this.q.bitLength(), rand);
|
|
}
|
|
while (P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
|
|
|
|
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
|
|
|
|
U = result[0];
|
|
V = result[1];
|
|
if (V.multiply(V).mod(this.q).equals(fourQ)) {
|
|
// Integer division by 2, mod q
|
|
if (V.testBit(0)) {
|
|
V = V.add(this.q);
|
|
}
|
|
V = V.shiftRight(1);
|
|
return new ec.FieldElementFp(this.q, V);
|
|
}
|
|
}
|
|
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
|
|
|
|
return null;
|
|
};
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*/
|
|
ec.FieldElementFp.fastLucasSequence = function (p, P, Q, k) {
|
|
// TODO Research and apply "common-multiplicand multiplication here"
|
|
|
|
var n = k.bitLength();
|
|
var s = k.getLowestSetBit();
|
|
var Uh = BigInteger.ONE;
|
|
var Vl = BigInteger.TWO;
|
|
var Vh = P;
|
|
var Ql = BigInteger.ONE;
|
|
var Qh = BigInteger.ONE;
|
|
|
|
for (var j = n - 1; j >= s + 1; --j) {
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
if (k.testBit(j)) {
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vh).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
|
|
}
|
|
else {
|
|
Qh = Ql;
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
}
|
|
}
|
|
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
Qh = Ql.multiply(Q).mod(p);
|
|
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
|
|
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
|
|
Ql = Ql.multiply(Qh).mod(p);
|
|
|
|
for (var j = 1; j <= s; ++j) {
|
|
Uh = Uh.multiply(Vl).mod(p);
|
|
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
|
|
Ql = Ql.multiply(Ql).mod(p);
|
|
}
|
|
|
|
return [Uh, Vl];
|
|
};
|
|
|
|
// ----------------
|
|
// ECPointFp constructor
|
|
ec.PointFp = function (curve, x, y, z, compressed) {
|
|
this.curve = curve;
|
|
this.x = x;
|
|
this.y = y;
|
|
// Projective coordinates: either zinv == null or z * zinv == 1
|
|
// z and zinv are just BigIntegers, not fieldElements
|
|
if (z == null) {
|
|
this.z = BigInteger.ONE;
|
|
}
|
|
else {
|
|
this.z = z;
|
|
}
|
|
this.zinv = null;
|
|
// compression flag
|
|
this.compressed = !!compressed;
|
|
};
|
|
|
|
ec.PointFp.prototype.getX = function () {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.x.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.getY = function () {
|
|
if (this.zinv == null) {
|
|
this.zinv = this.z.modInverse(this.curve.q);
|
|
}
|
|
var r = this.y.toBigInteger().multiply(this.zinv);
|
|
this.curve.reduce(r);
|
|
return this.curve.fromBigInteger(r);
|
|
};
|
|
|
|
ec.PointFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
if (this.isInfinity()) return other.isInfinity();
|
|
if (other.isInfinity()) return this.isInfinity();
|
|
var u, v;
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
|
if (!u.equals(BigInteger.ZERO)) return false;
|
|
// v = X2 * Z1 - X1 * Z2
|
|
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
|
return v.equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.isInfinity = function () {
|
|
if ((this.x == null) && (this.y == null)) return true;
|
|
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
|
};
|
|
|
|
ec.PointFp.prototype.negate = function () {
|
|
return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z);
|
|
};
|
|
|
|
ec.PointFp.prototype.add = function (b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
// u = Y2 * Z1 - Y1 * Z2
|
|
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
|
// v = X2 * Z1 - X1 * Z2
|
|
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
|
|
|
|
|
if (BigInteger.ZERO.equals(v)) {
|
|
if (BigInteger.ZERO.equals(u)) {
|
|
return this.twice(); // this == b, so double
|
|
}
|
|
return this.curve.getInfinity(); // this = -b, so infinity
|
|
}
|
|
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
var x2 = b.x.toBigInteger();
|
|
var y2 = b.y.toBigInteger();
|
|
|
|
var v2 = v.square();
|
|
var v3 = v2.multiply(v);
|
|
var x1v2 = x1.multiply(v2);
|
|
var zu2 = u.square().multiply(this.z);
|
|
|
|
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
|
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
|
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
|
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
|
|
// z3 = v^3 * z1 * z2
|
|
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice = function () {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
|
|
|
// TODO: optimized handling of constants
|
|
var THREE = new BigInteger("3");
|
|
var x1 = this.x.toBigInteger();
|
|
var y1 = this.y.toBigInteger();
|
|
|
|
var y1z1 = y1.multiply(this.z);
|
|
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
|
var a = this.curve.a.toBigInteger();
|
|
|
|
// w = 3 * x1^2 + a * z1^2
|
|
var w = x1.square().multiply(THREE);
|
|
if (!BigInteger.ZERO.equals(a)) {
|
|
w = w.add(this.z.square().multiply(a));
|
|
}
|
|
w = w.mod(this.curve.q);
|
|
//this.curve.reduce(w);
|
|
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
|
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
|
|
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
|
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
|
// z3 = 8 * (y1 * z1)^3
|
|
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
|
|
|
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
|
};
|
|
|
|
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
|
// TODO: modularize the multiplication algorithm
|
|
ec.PointFp.prototype.multiply = function (k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// Compute this*j + x*k (simultaneous multiplication)
|
|
ec.PointFp.prototype.multiplyTwo = function (j, x, k) {
|
|
var i;
|
|
if (j.bitLength() > k.bitLength())
|
|
i = j.bitLength() - 1;
|
|
else
|
|
i = k.bitLength() - 1;
|
|
|
|
var R = this.curve.getInfinity();
|
|
var both = this.add(x);
|
|
while (i >= 0) {
|
|
R = R.twice();
|
|
if (j.testBit(i)) {
|
|
if (k.testBit(i)) {
|
|
R = R.add(both);
|
|
}
|
|
else {
|
|
R = R.add(this);
|
|
}
|
|
}
|
|
else {
|
|
if (k.testBit(i)) {
|
|
R = R.add(x);
|
|
}
|
|
}
|
|
--i;
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
|
|
// patched by coretechs to support compressed public keys
|
|
ec.PointFp.prototype.getEncoded = function (compressed) {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
|
|
var enc = ec.integerToBytes(x, len);
|
|
|
|
// when compressed prepend byte depending if y point is even or odd
|
|
if (compressed) {
|
|
if (y.isEven()) {
|
|
enc.unshift(0x02);
|
|
}
|
|
else {
|
|
enc.unshift(0x03);
|
|
}
|
|
}
|
|
else {
|
|
enc.unshift(0x04);
|
|
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
|
|
}
|
|
return enc;
|
|
};
|
|
|
|
ec.PointFp.decodeFrom = function (curve, enc) {
|
|
var type = enc[0];
|
|
var dataLen = enc.length - 1;
|
|
|
|
// Extract x and y as byte arrays
|
|
var xBa = enc.slice(1, 1 + dataLen / 2);
|
|
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
|
|
|
|
// Prepend zero byte to prevent interpretation as negative integer
|
|
xBa.unshift(0);
|
|
yBa.unshift(0);
|
|
|
|
// Convert to BigIntegers
|
|
var x = new BigInteger(xBa);
|
|
var y = new BigInteger(yBa);
|
|
|
|
// Return point
|
|
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
|
|
};
|
|
|
|
ec.PointFp.prototype.add2D = function (b) {
|
|
if (this.isInfinity()) return b;
|
|
if (b.isInfinity()) return this;
|
|
|
|
if (this.x.equals(b.x)) {
|
|
if (this.y.equals(b.y)) {
|
|
// this = b, i.e. this must be doubled
|
|
return this.twice();
|
|
}
|
|
// this = -b, i.e. the result is the point at infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var x_x = b.x.subtract(this.x);
|
|
var y_y = b.y.subtract(this.y);
|
|
var gamma = y_y.divide(x_x);
|
|
|
|
var x3 = gamma.square().subtract(this.x).subtract(b.x);
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.twice2D = function () {
|
|
if (this.isInfinity()) return this;
|
|
if (this.y.toBigInteger().signum() == 0) {
|
|
// if y1 == 0, then (x1, y1) == (x1, -y1)
|
|
// and hence this = -this and thus 2(x1, y1) == infinity
|
|
return this.curve.getInfinity();
|
|
}
|
|
|
|
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
|
|
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
|
|
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
|
|
|
|
var x3 = gamma.square().subtract(this.x.multiply(TWO));
|
|
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
|
|
|
|
return new ec.PointFp(this.curve, x3, y3);
|
|
};
|
|
|
|
ec.PointFp.prototype.multiply2D = function (k) {
|
|
if (this.isInfinity()) return this;
|
|
if (k.signum() == 0) return this.curve.getInfinity();
|
|
|
|
var e = k;
|
|
var h = e.multiply(new BigInteger("3"));
|
|
|
|
var neg = this.negate();
|
|
var R = this;
|
|
|
|
var i;
|
|
for (i = h.bitLength() - 2; i > 0; --i) {
|
|
R = R.twice();
|
|
|
|
var hBit = h.testBit(i);
|
|
var eBit = e.testBit(i);
|
|
|
|
if (hBit != eBit) {
|
|
R = R.add2D(hBit ? this : neg);
|
|
}
|
|
}
|
|
|
|
return R;
|
|
};
|
|
|
|
ec.PointFp.prototype.isOnCurve = function () {
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
var a = this.curve.getA().toBigInteger();
|
|
var b = this.curve.getB().toBigInteger();
|
|
var n = this.curve.getQ();
|
|
var lhs = y.multiply(y).mod(n);
|
|
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
|
|
return lhs.equals(rhs);
|
|
};
|
|
|
|
ec.PointFp.prototype.toString = function () {
|
|
return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() + ')';
|
|
};
|
|
|
|
/**
|
|
* Validate an elliptic curve point.
|
|
*
|
|
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
|
|
*/
|
|
ec.PointFp.prototype.validate = function () {
|
|
var n = this.curve.getQ();
|
|
|
|
// Check Q != O
|
|
if (this.isInfinity()) {
|
|
throw new Error("Point is at infinity.");
|
|
}
|
|
|
|
// Check coordinate bounds
|
|
var x = this.getX().toBigInteger();
|
|
var y = this.getY().toBigInteger();
|
|
if (x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('x coordinate out of bounds');
|
|
}
|
|
if (y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0) {
|
|
throw new Error('y coordinate out of bounds');
|
|
}
|
|
|
|
// Check y^2 = x^3 + ax + b (mod n)
|
|
if (!this.isOnCurve()) {
|
|
throw new Error("Point is not on the curve.");
|
|
}
|
|
|
|
// Check nQ = 0 (Q is a scalar multiple of G)
|
|
if (this.multiply(n).isInfinity()) {
|
|
// TODO: This check doesn't work - fix.
|
|
throw new Error("Point is not a scalar multiple of G.");
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
|
|
|
|
// ----------------
|
|
// ECCurveFp constructor
|
|
ec.CurveFp = function (q, a, b) {
|
|
this.q = q;
|
|
this.a = this.fromBigInteger(a);
|
|
this.b = this.fromBigInteger(b);
|
|
this.infinity = new ec.PointFp(this, null, null);
|
|
this.reducer = new Barrett(this.q);
|
|
}
|
|
|
|
ec.CurveFp.prototype.getQ = function () {
|
|
return this.q;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getA = function () {
|
|
return this.a;
|
|
};
|
|
|
|
ec.CurveFp.prototype.getB = function () {
|
|
return this.b;
|
|
};
|
|
|
|
ec.CurveFp.prototype.equals = function (other) {
|
|
if (other == this) return true;
|
|
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
|
};
|
|
|
|
ec.CurveFp.prototype.getInfinity = function () {
|
|
return this.infinity;
|
|
};
|
|
|
|
ec.CurveFp.prototype.fromBigInteger = function (x) {
|
|
return new ec.FieldElementFp(this.q, x);
|
|
};
|
|
|
|
ec.CurveFp.prototype.reduce = function (x) {
|
|
this.reducer.reduce(x);
|
|
};
|
|
|
|
// for now, work with hex strings because they're easier in JS
|
|
// compressed support added by bitaddress.org
|
|
ec.CurveFp.prototype.decodePointHex = function (s) {
|
|
var firstByte = parseInt(s.substr(0, 2), 16);
|
|
switch (firstByte) { // first byte
|
|
case 0:
|
|
return this.infinity;
|
|
case 2: // compressed
|
|
case 3: // compressed
|
|
var yTilde = firstByte & 1;
|
|
var xHex = s.substr(2, s.length - 2);
|
|
var X1 = new BigInteger(xHex, 16);
|
|
return this.decompressPoint(yTilde, X1);
|
|
case 4: // uncompressed
|
|
case 6: // hybrid
|
|
case 7: // hybrid
|
|
var len = (s.length - 2) / 2;
|
|
var xHex = s.substr(2, len);
|
|
var yHex = s.substr(len + 2, len);
|
|
|
|
return new ec.PointFp(this,
|
|
this.fromBigInteger(new BigInteger(xHex, 16)),
|
|
this.fromBigInteger(new BigInteger(yHex, 16)));
|
|
|
|
default: // unsupported
|
|
return null;
|
|
}
|
|
};
|
|
|
|
ec.CurveFp.prototype.encodePointHex = function (p) {
|
|
if (p.isInfinity()) return "00";
|
|
var xHex = p.getX().toBigInteger().toString(16);
|
|
var yHex = p.getY().toBigInteger().toString(16);
|
|
var oLen = this.getQ().toString(16).length;
|
|
if ((oLen % 2) != 0) oLen++;
|
|
while (xHex.length < oLen) {
|
|
xHex = "0" + xHex;
|
|
}
|
|
while (yHex.length < oLen) {
|
|
yHex = "0" + yHex;
|
|
}
|
|
return "04" + xHex + yHex;
|
|
};
|
|
|
|
/*
|
|
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
|
|
* Ported to JavaScript by bitaddress.org
|
|
*
|
|
* Number yTilde
|
|
* BigInteger X1
|
|
*/
|
|
ec.CurveFp.prototype.decompressPoint = function (yTilde, X1) {
|
|
var x = this.fromBigInteger(X1);
|
|
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
|
|
var beta = alpha.sqrt();
|
|
// if we can't find a sqrt we haven't got a point on the curve - run!
|
|
if (beta == null) throw new Error("Invalid point compression");
|
|
var betaValue = beta.toBigInteger();
|
|
var bit0 = betaValue.testBit(0) ? 1 : 0;
|
|
if (bit0 != yTilde) {
|
|
// Use the other root
|
|
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
|
|
}
|
|
return new ec.PointFp(this, x, beta, null, true);
|
|
};
|
|
|
|
|
|
ec.fromHex = function (s) { return new BigInteger(s, 16); };
|
|
|
|
ec.integerToBytes = function (i, len) {
|
|
var bytes = i.toByteArrayUnsigned();
|
|
if (len < bytes.length) {
|
|
bytes = bytes.slice(bytes.length - len);
|
|
} else while (len > bytes.length) {
|
|
bytes.unshift(0);
|
|
}
|
|
return bytes;
|
|
};
|
|
|
|
|
|
// Named EC curves
|
|
// ----------------
|
|
// X9ECParameters constructor
|
|
ec.X9Parameters = function (curve, g, n, h) {
|
|
this.curve = curve;
|
|
this.g = g;
|
|
this.n = n;
|
|
this.h = h;
|
|
}
|
|
ec.X9Parameters.prototype.getCurve = function () { return this.curve; };
|
|
ec.X9Parameters.prototype.getG = function () { return this.g; };
|
|
ec.X9Parameters.prototype.getN = function () { return this.n; };
|
|
ec.X9Parameters.prototype.getH = function () { return this.h; };
|
|
|
|
// secp256k1 is the Curve used by Bitcoin
|
|
ec.secNamedCurves = {
|
|
// used by Bitcoin
|
|
"secp256k1": function () {
|
|
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
|
|
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
|
|
var a = BigInteger.ZERO;
|
|
var b = ec.fromHex("7");
|
|
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
|
|
var h = BigInteger.ONE;
|
|
var curve = new ec.CurveFp(p, a, b);
|
|
var G = curve.decodePointHex("04"
|
|
+ "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"
|
|
+ "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
|
|
return new ec.X9Parameters(curve, G, n, h);
|
|
}
|
|
};
|
|
|
|
// secp256k1 called by Bitcoin's ECKEY
|
|
ec.getSECCurveByName = function (name) {
|
|
if (ec.secNamedCurves[name] == undefined) return null;
|
|
return ec.secNamedCurves[name]();
|
|
}
|
|
})();
|